Bandwidth (signal processing)

Bandwidth is the difference between the upper and lower frequencies in a contiguous set of frequencies. It is typically measured in hertz, and may sometimes refer to passband bandwidth, sometimes to baseband bandwidth, depending on context. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, an electronic filter, a communication channel, or a signal spectrum. In case of a low-pass filter or baseband signal, the bandwidth is equal to its upper cutoff frequency. The term baseband bandwidth always refers to the upper cutoff frequency, regardless of whether the filter is bandpass or low-pass.

Bandwidth in hertz is a central concept in many fields, including electronics, information theory, radio communications, signal processing, and spectroscopy. A key characteristic of bandwidth is that a band of a given width can carry the same amount of information, regardless of where that band is located in the frequency spectrum (assuming equivalent noise level). For example, a 5 kHz band can carry a telephone conversation whether that band is at baseband (as in your POTS telephone line) or modulated to some higher (passband) frequency.

In computer networking and other digital fields, the term bandwidth often refers to a data rate measured in bits per second, for example network throughput, sometimes denoted network bandwidth, data bandwidth or digital bandwidth. The reason is that according to Hartley's law, the digital data rate limit (or channel capacity) of a physical communication link is proportional to its bandwidth in hertz, sometimes denoted radio frequency (RF) bandwidth, signal bandwidth, frequency bandwidth, spectral bandwidth or analog bandwidth. For bandwidth as a computing term, less ambiguous terms are bit rate, throughput, maximum throughput, goodput or channel capacity.

Contents

Overview

Bandwidth is a key concept in many telephony applications. In radio communications, for example, bandwidth is the frequency range occupied by a modulated carrier wave, whereas in optics it is the width of an individual spectral line or the entire spectral range.

In many signal processing contexts, bandwidth is a valuable and limited resource. For example, an FM radio receiver's tuner spans a limited range of frequencies. A government agency (such as the Federal Communications Commission in the United States) may apportion the regionally available bandwidth to broadcast license holders so that their signals do not mutually interfere. Each transmitter owns a slice of bandwidth, a valuable (if intangible) commodity.

For different applications there are different precise definitions. For example, one definition of bandwidth could be the range of frequencies beyond which the frequency function is zero. This would correspond to the mathematical notion of the support of a function (i.e., the total "length" of values for which the function is nonzero). A less strict and more practically useful definition will refer to the frequencies where the frequency function is small. Small could mean less than 3 dB below (i.e., power output < 1/2 or voltage output < \scriptstyle \sqrt{1/2} \ \approx \ 0.707 of) the maximum value, or more rarely 10 dB below, or it could mean below a certain absolute value. As with any definition of the width of a function, many definitions are suitable for different purposes.

Bandwidth typically refers to baseband bandwidth in the context of, for example, sampling theorem and Nyquist sampling rate, while it refers to passband bandwidth in the context of Nyquist symbol rate or Shannon-Hartley channel capacity for communication systems.

X-dB bandwidth

In some contexts, the signal bandwidth in hertz refers to the frequency range in which the signal's spectral density is nonzero or above a small threshold value. That definition is used in calculations of the lowest sampling rate that will satisfy the sampling theorem. Because this range of non-zero amplitude may be very broad or infinite, this definition is typically relaxed so that the bandwidth is defined as the range of frequencies in which the signal's spectral density is above a certain threshold relative to its maximum. Most commonly, bandwidth refers to the 3-dB bandwidth, that is, the frequency range within which the spectral density (in W/Hz or V2/Hz) is above half its maximum value (or the spectral amplitude, in V or V/Hz, is more than 70.7% of its maximum); that is, above −3 dB relative to the peak.[1]

The word bandwidth applies to signals as described above, but it could also apply to systems, for example filters or communication channels. To say that a system has a certain bandwidth means that the system can process signals of that bandwidth, or that the system reduces the bandwidth of a white noise input to that bandwidth.

The 3 dB bandwidth of an electronic filter or communication channel is the part of the system's frequency response that lies within 3 dB of the response at its peak, which in the passband filter case is typically at or near its center frequency, and in the lowpass filter is near 0 hertz. If the maximum gain is 0 dB, the 3 dB gain is the range where the gain is more than -3dB, or the attenuation is less than + 3dB. This is also the range of frequencies where the amplitude gain is above 70.7% of the maximum amplitude gain, and above half the maximum power gain. This same "half power gain" convention is also used in spectral width, and more generally for extent of functions as full width at half maximum (FWHM).

In electronic filter design, a filter specification may require that within the filter passband, the gain is nominally 0 dB +/- a small number of dB, for example within the +/- 1 dB interval. In the stopband(s), the required attenuation in dB is above a certain level, for example >100 dB. In a transition band the gain is not specified. In this case, the filter bandwidth corresponds to the passband width, which in this example is the 1dB-bandwidth. If the filter shows amplitude ripple within the passband, the x dB point refers to the point where the gain is x dB below the nominal passband gain rather than x dB below the maximum gain.

A commonly used quantity is fractional bandwidth. This is the bandwidth of a device divided by its center frequency. E.g., a passband filter that has a bandwidth of 2 MHz with center frequency 10 MHz will have a fractional bandwidth of 2/10, or 20%.

In communication systems, in calculations of the Shannon–Hartley channel capacity, bandwidth refers to the 3dB-bandwidth. In calculations of the maximum symbol rate, the Nyquist sampling rate, and maximum bit rate according to the Hartley formula, the bandwidth refers to the frequency range within which the gain is non-zero, or the gain in dB is below a very large value.

The fact that in equivalent baseband models of communication systems, the signal spectrum consists of both negative and positive frequencies, can lead to confusion about bandwidth, since they are sometimes referred to only by the positive half, and one will occasionally see expressions such as B = 2W, where B is the total bandwidth (i.e. the maximum passband bandwidth of the carrier-modulated RF signal and the minimum passband bandwidth of the physical passband channel), and W is the positive bandwidth (the baseband bandwidth of the equivalent channel model). For instance, the baseband model of the signal would require a lowpass filter with cutoff frequency of at least W to stay intact, and the physical passband channel would require a passband filter of at least B to stay intact.

In signal processing and control theory the bandwidth is the frequency at which the closed-loop system gain drops 3 dB below peak.

In basic electric circuit theory, when studying band-pass and band-reject filters, the bandwidth represents the distance between the two points in the frequency domain where the signal is \frac{1}{\sqrt{2}} of the maximum signal amplitude (half power).

Antenna systems

In the field of antennas, two different methods of expressing relative bandwidth are used for narrowband and wideband antennas.[2] For either, a set of criteria is established to define the extents of the bandwidth, such as input impedance, pattern, or polarization.

Percent bandwidth, usually used for narrowband antennas, is used defined as %B=\frac{f_H-f_L}{f_c}=2 \frac{f_H-f_L}{f_H%2Bf_L} . The theoretical limit to percent bandwidth is 200%, which occurs for f_L = 0.

Fractional bandwidth or Ratio bandwidth, usually used for wideband antennas, is defined as B = f_H/f_L, and is typically presented in the form of B:1. Fractional bandwidth is used for wideband antennas because of the compression of the percent bandwidth that occurs mathematically with percent bandwidths above 100%, which corresponds to a fractional bandwidth of 3:1. Remark:If�%B =2 \frac{f_H-f_L}{f_H%2Bf_L} = p% , B = \frac{200%2Bp}{200-p} .

Photonics

In photonics, the term bandwidth occurs in a variety of meanings:

A related concept is the spectral linewidth of the radiation emitted by excited atoms.

See also

References

  1. ^ Van Valkenburg, M. E.. Network Analysis (3rd edition ed.). pp. 383–384. ISBN 0-13-611095-9. http://www.amazon.com/Network-Analysis-Mac-Van-Valkenburg/dp/0136110959. Retrieved 2008-06-22. 
  2. ^ Stutzman, Warren L., and Gary A. Theiele. Antenna Theory and Design. 2nd Ed. New York: 1998. ISBN 0-471-02590-9